
Developing a flexible virtual networking laboratory

platform for education

Catalina Álvarez

Universidad de Chile

catalin@uchile.cl

1 Abstract

Giving hands-on networking experiences to engineer-
ing students is important as it strengthens knowledge
and it gives a better idea of the challenges they will
find in practice; it is, however, expensive and imprac-
tical to have physical equipment for the students to
practice with. Hence, the idea to simulate complete
physical networking laboratories using virtualization
technology for use in networking education. There are
a number of existing virtual laboratory alternatives,
but all of them are limited in the machine images they
can use. This work presents the main aspects of the
design and implementation of a more flexible virtual
networking laboratory platform.

2 Introduction

One of the biggest challenges in teaching networking is
how to bridge theory and practice. It is usual for stu-
dents to feel that both aspects of the area are discon-
nected: on one side, they see protocols and algorithms,
on the other, machines and links that they simply use.
Hence, hands-on experience is valuable, and desirable,
to produce well qualified professionals that will main-
tain and develop technologies in the future. Moreover,
even professionals in related areas, such as software
engineering, can benefit from experience in practical
networking, allowing them to see better how the soft-
ware they develop communicates.

Laboratories are the most common way to teach
hands-on networking, either using physical equipment
or virtual versions. Both alternatives have their pros
and cons: physical laboratories allow students to touch
and interact with the same equipment they will see on
field, while virtual ones can be considered more ab-
stract, and are harder to visualize. On the other hand,
constructing and maintaining a physical laboratory up

In: Proceedings of the IV School of Systems and Networks
(SSN 2018), Valdivia, Chile, October 29-31, 2018. Published
at http://ceur-ws.org

to date is expensive, and, depending on the number of
students and the required courses, the time each stu-
dent can interact with the equipment is limited.

Virtual networking laboratories come in two flavors:
proprietary and open source. Proprietary laboratories,
such as Cisco’s, are usually paid, and mostly focused
on teaching their own technology stack, showing con-
figurations, but without theorical background (as most
protocols are proprietary). Open source laboratories
are varied, with a number of objectives.

Among famous open source networking laborato-
ries, we can name Marionnet[1], Netkit[2], Mininet[3],
GNS-3[4], among others. Each of them, however, with
its own limitations; evaluating each platform is out
of the scope of this document, but it suffices to say
that all current virtual laboratories are limited to a
set of operating system (OS) images, mostly Linux-
based and some networking systems such as Cisco’s
IOS or some open source alternatives.

This fact is important because of two reasons: First,
it limits the uses of the laboratories to those of a physi-
cal testbed, meaning, they allow the creation of topolo-
gies and use of the protocols already installed in the
operating system, but does not allow changing those
protocols and recompiling the kernels. Second, as the
images are fixed, one either relies on the community to
keep the images up to date, or takes the matter into
their own hands and creates those images, which is
possible, but could be hard depending on one’s knowl-
edge and the laboratories documentation.

Considering the points established previously, we
decide to design and implement an open source net-
working laboratory that is flexible enough for the use
of any kernel, even custom ones, and allows the easy
inclusion of new operating system images.

3 Related work

Most of the existing networking laboratories can be
divided in two categories:

catalin@uchile.cl


• Simulators, which model network behavior but do
not keep the internal functionalities of the hard-
ware; among these we can name GNS-3 and OM-
NeT++. In networking, simulators mostly use
mathematical models of traffic, channels and pro-
tocols to predict network behavior. As they only
mimic and are unable to faithfully represent all
aspects of networking, they are not interesting for
our ends.

• Emulators, which differ from simulators in the
fact that they do appear, and act as, a real net-
work; emulators use software to duplicate the con-
ditions of the original system, fact that make them
slower, but more realistic, than simulators.

We focus our investigation on emulators, as they
give a more realistic approach to networking. We
present a summary of the evaluated emulators, but
first we present a small comment on virtualization
technologies, relevant to virtual laboratories. There
are several virtualization platforms and techniques,
but they all can be roughly divided in two categories:
full-virtualization platforms and para-virtualization
ones. Para-virtualization allows the guest machine to
use portions of the host machine’s kernel, including
I/O, thread and memory management, among oth-
ers, instead of emulating these operations via soft-
ware; on the other hand, full-virtualization engines
emulate the entirety of the guest machine kernel, in-
cluding costly operations such as the previously men-
tioned, making this technique considerably more re-
source intensive and the guests, slower. There are,
however, several advantages to full-virtualization, such
as the fact that it can virtualize all OS, with no
modifications whatsoever; on the other hand to par-
avirtualize an OS it must be explicitly ported to the
para-API, which makes standard OS unable to run on
top of para-virtualization platforms. Moreover, para-
virtualization, as it uses portions of the host kernel, is
not able to emulate a different hardware architecture;
this point is critical as a number of networking equip-
ment, such as routers, switches and firewalls, do not
use the x86 architecture commonly found in personal
computers. Hence, we decide to use full-virtualization,
because we desire to be able to emulate as much types
of network equipment as possible, without being re-
stricted by the architecture or the need to port the
para-virtualization API.

Continuing with our related work investigation;
first, we explore Xen Worlds[5] and NVLab[7], both
based on Xen server, the technology used in Amazon
Web Service; all emulators based on Xen are discarded
due to the fact that Xen is a bare-metal hyper-visor,
meaning, it runs directly on hardware, with no host op-
erating system, which makes virtual machine adminis-

tration harder. Xen is both a para-virtualization and
full-virtualization platform, which is ideal since it func-
tions with para-virtualization with compatible kernels
and full-virtualization with those that are not; how-
ever, running Xen requires a compatible kernel (which
not all Linux versions are) or the use of a commercial
version, such as Citrix’s Xen Server. Moreover, both
projects based on Xen were found to be quite old and
with no continued development or even available code.

Next, we consider Netkit, a popular teaching lab-
oratory based on UML (User Mode Linux); it has a
number of pre-made laboratories, which are consid-
ered as a base for our own, and active community
participation. However, it is not useful in protocol
experimentation, as UML uses the same kernel as the
host machine, which, naturally, means that all labora-
tories are bounded to the networking implementations
found in Linux kernels, which, as mentioned before, is
not what we are looking for.

Third, we explore Mininet, a network emulator fo-
cused on SDN and Open Flow learning with an active
community and a number of fork projects. It uses net-
work namespaces (a containerization mechanism of the
Linux kernel that provides a way to copy the network
stack of the Linux kernel) and process based emula-
tion, so it only has as many tools as the Linux ker-
nel on top of which it is running, without support for
any stack based on Windows, BSD, or any other OS;
Mininet is a good alternative, because of its commu-
nity support, but if we want a laboratory able to em-
ulate all different equipment found in real networks,
we need an alternative more flexible in what operating
systems it supports.

Finally, we find Nemu[6], based on QEMU and with
mobile simulation capabilities; it is evaluated favor-
ably, but presented two problems that we find pivotal
in the decision of developing a new networking labo-
ratory: First, its development was halted midway and
much of the functionality is unstable or poorly doc-
umented; moreover, it is basically impossible to run,
and even its website was put down during our develop-
ment, implying that the work has been halted or can-
celed. Second, as the previous emulators, uses fixed
pre-configured virtual machine images, which do not
have the flexibility desired.

We conclude from our investigation that, in order
to allow our students to experiment with all types of
network equipment (including those which operating
system is not based on Unix platforms) we should de-
velop our own virtual laboratory platform.

4 Development of the platform

The platform is open-source and available for down-
load in https://github.com/niclabs/VirtualLabs.

https://github.com/niclabs/VirtualLabs


We decide to use QEMU/KVM for virtualization
for a number of reasons: first, in combination, they
are a full-virtualization platform that allows custom
kernels and can emulate different architectures. Sec-
ond, differently from Xen Server, QEMU/KVM work
on top of a Linux-based operating system, which al-
lows for easier administration of the virtual machines.
This way, the virtual laboratory platform can be run
on almost any host machine (the laboratory “server”),
as long as it has a Linux-based OS and supports vir-
tualization.

The most extensive part of the design stage was de-
ciding how the different elements in a network topology
would be modeled; in particular, we decide to model
the most common elements find in a network: termi-
nals (end users), switches, routers and the links that
connect them. At this stage of the development, we
focus on open-source solutions, so we choose Linux-
based OS for the terminals, LISA (Linux Switching
Appliance[8]) for switches, VyOS (a fork of the Vy-
atta project) for routing, and standard Linux bridges
for links.

It is important to mention that we are extremely
conscious throughout the modeling stage, and later the
implementation, that we must avoid the main pitfall
found in current virtual laboratories, their restrictive-
ness, so we design the system so that it is easy to in-
clude new networking elements such as load balancers,
firewalls, NAT servers, etc.

Once we define how the different elements involved
are modeled, we design how these models are to be
implemented; in particular, how we will create the el-
ements of the network, meaning, the virtual machines
that are to be terminals, switches and routers. A first
approach would be to simply keep an iso image for
each operating system, but installing a virtual ma-
chine from scratch each time one needs a terminal is
simply too time consuming. Luckily, KVM provides
“templates”, virtual machines with an installed oper-
ating system which can be “cloned“ as many times as
necessary; machines created from the same template
do not share configurations nor disk, so they are, in
essence, different machines. Using these templates,
we can provide a number of ready to use base ter-
minals, switches and routers, which can be copied as
many times as necessary; moreover, including new el-
ements to our laboratories is just a matter of creating
new template images. The virtual machines communi-
cate with each other using Linux bridges defined in the
host machine, virtual network interfaces which the ma-
chines associate to using the bridged networking mode
included in KVM. Finally, to interact with the virtual
machines, we take advantage of KVM, which provides
a VNC server to all virtualized machines.

Besides the networking elements themselves, we in-

clude the concept of a “laboratory”, which is a network
topology plus all the virtual machines with some con-
figurations. The network topology is represented by
an XML file, which details the network elements, in-
cluding name, type of element (terminal, router, etc.),
template the machine is based on, number of network
interface cards (which can either be named or referred
by a numerical index). The XML file also details the
links between the elements, using the network interface
cards defined in each element as the two endpoints;
it is possible to add shaping properties to each of the
links, such as delay, jitter, limited bandwidth and loss,
which are added to the bridge that models the link. To
add connection to the internet, a special type of link
is included, called an “external link”, with only one
endpoint, which, in turn, connects to a bridge that
is also associated to the physical interface of the host
machine that has internet connection.

The machines of a laboratory are copied from a tem-
plate, but can be latter accessed to and modified; they
have an explanatory name (a combination of the lab-
oratory name and the name of the element itself) and
are kept in the hard drive of the host machine, so the
laboratory can be started and paused several times.
A possible extension to the platform is the inclusion
of start-up scripts with the machines configuration,
which would make keeping the machines unnecessary,
as each time one starts the laboratory new machines
would be created from a template, and then configured
as required.

5 Conclusions

We present the problem of hands-on experience in net-
working teaching, particularly related to the bridge
between theory and practice, and then briefly describe
why current solutions do not suffice for all ends. Then,
we present some of the current alternatives, further
detailing their characteristics and why they are dis-
carded; exploring this alternatives has the double pur-
pose of focusing our objectives and serve as inspiration
in the design and implementation of our virtual labora-
tory. We present a summary of the steps taken during
development, detailing the tools used, how we choose
to model the problem and some details of the imple-
mentation, including a summary of the most relevant
concepts require understanding the use of the virtual
laboratory platform.

6 Future work

In the future, we have three concrete objectives:

• Design a number of pre-made laboratories with
different teaching objectives in mind. We think



Netkit’s approach to laboratories is interesting,
and expect to follow similar guidelines.

• Test the virtual laboratory, using the previous
laboratory experiences, in a networking course,
and continue refining it depending on the stu-
dent’s feedback. We plan to focus in an undergrad
course since the students usually come with little
or no networking background; hence we theorize
that the students would most benefit from prac-
tical laboratory experience when compared with
graduate students.

• Design and implement a GUI for the creation,
administration and interaction with the labora-
tories, since, as commented previously, for now
we rely on VNC to interact with the virtual ma-
chines.

References

[1] Loddo J, Saiu L. Marionnet: a virtual network
laboratory and simulation tool. First International
Conference on Simulation Tools and Techniques for
Communications, Networks and Systems. 2008.

[2] Pizzonia M, Rimondini M. Netkit: network emu-
lation for education. Software: Practice and Expe-
rience, 46(2), 133-165. 2016.

[3] Huang T, Jeyakumar V, Lantz B, Feamster N,
Winstein K, Sivaraman A. Teaching computer net-
working with mininet. ACM SIGCOMM. 2014.

[4] Peng C, Liu B. Application of GNS3 at Computer
Network Teaching. Theory Research, 20, 136. 2016.

[5] Anderson B, Joines A, Daniels T. Xen worlds:
leveraging virtualization in distance education.
ACM SIGCSE Bulletin (Vol. 41, No. 3, pp. 293-
297). 2009.

[6] Autefage V, Magoni D. Network emulator: a net-
work virtualization testbed for overlay experimen-
tations. Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD),
2012 IEEE 17th International Workshop on (pp.
266-270). 2012.

[7] Wannous M, Nakano H. NVLab, a networking vir-
tual web-based laboratory that implements virtual-
ization and virtual network computing technologies.
IEEE Transactions on Learning Technologies, 3(2),
129-138. 2010.

[8] Rendec R, Nicu I, Purdila O. Linux multilayer
switching with LiSA. Proceedings of the 5th RoE-
duNet IEEE International Conference. 2006.


	Abstract
	Introduction
	Related work
	Development of the platform
	Conclusions
	Future work

